
The SIR infection model

Assume that a new infectious disease spreads in a population. We are interested in the dy-
namics of infected individuals, people that have recovered from the disease, and potentially
further groups (e.g. people who are infected, but do not yet spread the disease during an
incubation period, or people in the hospital or the number of deceased). Models for such
disease dynamics are designed and discussed in the field of mathematical ecology. The
most basic models go back to a series of papers by William Kermack and Anderson Gray
McKendrick (a student of Ronald Ross) from 1927 to 1933. Kermack-McKendrick theory
is still the conceptual basis of more complex epidemiological models today. This holds, in
particular, for the SIR infection model.

For the basic SIR model, we assume that individuals can get a disease only once and
consider three groups of individuals in an otherwise unstructured population: susceptibles
S(t) that can be infected by the disease, currently infected people I(t) that are also infec-
tious for others, and a removed class R(t) of people who have had the disease and cannot
be infected any more – either because they have recovered and are resistant or because
they are dead. In the simplest version of the model, we assume that the disease dynamics
unfolds rapidly, such that births and deaths in the population – other than deaths due to
the disease itself – can be ignored. We then have a constant population size

S(t) + I(t) + R(t) = N = const.

The disease dynamics can be described by the following set of ODEs,

Ṡ = − c

N
SI (1a)

İ =
c

N
SI − rI (1b)

Ṙ = rI, (1c)

where c is the average number of “transmission-allowing” contacts per individual and per
time unit and r is the recovery rate, or more strictly the rate at which previously infec-
tious individuals become non-infectious (which may also be because they are completely
quarantined or because they die). We have initial conditions

S(0) = S0 ; I(0) = I0 = N − S0 ; R(0) = 0.

Although we have three dynamical variables, the constraint of a constant population size
reduces the dimension of the dynamical system to two. Note also that the dynamics of
S and I does not depend on R(t) at all. We thus only need to consider the first two
ODEs in (1). Comparing these with (??) we see that they are just a special case of the
Lotka-Volterra predator-prey system, but without any intrinsic growth of the prey (= the
susceptible population). We further observe the following:

• The number of susceptibles is monotonically declining and confined to the interval
[0;S0].
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• The combined number of susceptibles and infected individuals, S(t) + I(t), is also
monotonically declining and confined to the interval [0;N ].

• Calculating isoclines, it is easy to see that the ODE system corresponds to a de-
generate case: all points on the axis I = 0 are equilibrium points and there are no
equilibria with I > 0. We thus see that the infected class will always be empty in
the long term, I(∞) = 0 (strictly, this follows because S(t) + I(t) is a Lyapunov
function, see the section on global stability below).

There are three questions of applied relevance that are usually asked for the SIR dynamics,
which we will discuss below.

Will the epidemic break out? Once the disease has entered the population, the most
basic question is whether it is able to spread and the number of infected will grow under
community transmission. We have

İ(t) =
( c

N
S(t)− r

)
I(t)

and thus İ > 0 iff

R(t) =
cS(t)

rN
> 1. (2)

R(t) is called the effective reproductive ratio1. Here, cS(t)/N is the average number of
newly infected individuals per infected individual per time interval (e.g. per day). The
rate r in the denominator defines the relevant time scale, i.e. Tr = 1/r is the expected time
that it takes for an infectious individual to enter the “removed” class, where it is no longer
infectious. R(t) is thus simply the average number of individuals that are newly infected
by each infected individual. Obviously, this quantity depends on the current number S(t)
of susceptible individuals. At the start of an outbreak, we usually have I0 � N and
thus S0 ≈ N . This motivates the definition of the basic reproductive ratio (also: basic
reproduction number)

R0 =
c

r
= cTr [≈ R(0) for S0 ≈ N ]. (3)

Note that R0 is just the average number of contacts during the time an individual is
infectious. In contrast to R(t) this is a fixed model parameter that does not change under
the dynamics. A value of R0 > 1 indicates that a disease can spread in a population
without immunity. The initial exponential increase in the number of infected individuals
then reads

I(t) = exp [(R0 − 1) t/Tr] I0

and R0 can be estimated from the daily growth factor as

R0 = 1 + Tr log

[
I(t + 1)

I(t)

]
≈ 1 + Tr

I(t + 1)− I(t)

I(t)
.

1Unfortunately, both the “removed” class and the reproductive ratio are commonly denoted by ‘capital-
R’. We use the calligraphic symbol for the reproductive ratio to distinguish both quantities.
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The maximal number of infected individuals In the case of an epidemic (R0 > 1),
the number of infected individuals I(t) will first increase and the number of susceptibles
S(t) decrease until the effective reproductive ratio reaches

R(t) =
cS(t)

rN
= 1,

With further decline of S(t), also I(t) declines and eventually reaches zero. For practical
reasons (e.g., hospital beds required), one is often interested in the maximal number of
infected individuals Imax. We can express the change in I as a function of S as

dI

dS
=

dI/dt

dS/dt
=

(cS − rN)I

−cSI
= R0

rN

cS
− 1 (4)

for I 6= 0. Integrating, and with the initial condition I(S0) = I0, we obtain

I(S) =
r

c
N log[S]− S + I0 + S0 −

r

c
N log[S0] = N − S +

r

c
N log[S/S0]. (5)

The maximum is obtained for S = Nr/c = N/R0, thus

Imax

N
= 1− 1− log[N/(S0R0)]

R0

≈ 1− 1 + log[R0]

R0

, (6)

for S0 ≈ N . In this limit, the maximal proportion of infected individuals in the population
is thus uniquely determined by R0. It ranges from 0 (for R0 = 1) to 1 (for R0 → ∞). If
R0 is only slightly larger than 1, we obtain Imax/N ≈ (R0 − 1)2/2 (the maximal number
of infected individuals decreases quadratically as R0 approaches 1).

How many individuals remain uninfected? We know that ultimately the number of
infected individuals must tend to zero, I∞ = 0. However, since all points on the I = 0 axis
are fixed points it is not clear how many individuals (if any) remain uninfected at the end
of the epidemic. This number S∞ is of obvious applied interest, in particular if the disease
is severe. From the first and the third equation in (1), we can write

dS

dR
=
−cS
rN

= −R0
S

N

and thus

S(R) = S0 exp

[
−R0

R

N

]
.

Since S∞ = N −R∞ we obtain S∞ as the solution of the transcendent equation

S∞ = S0 exp[−R0(1− S∞/N)] > 0. (7)

We thus see that there is always a fraction of uninfected individuals remaining at the end
of the outbreak. With S0 ≈ N the proportion s∞ := S∞/N of individuals that escape the
epidemic is the smaller root of

s∞ = exp[R0(s∞ − 1)].
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For R0 running from 1 to ∞, s∞ declines from 1 to zero. For R0 close to 1, we can
approximate the percentage r∞ of individuals that are affected as

r∞ = 1− s∞ ≈
2(R0 − 1)

R2
0

≈ 2(R0 − 1) .
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